If it's not what You are looking for type in the equation solver your own equation and let us solve it.
54n^2+36n=0
a = 54; b = 36; c = 0;
Δ = b2-4ac
Δ = 362-4·54·0
Δ = 1296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1296}=36$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(36)-36}{2*54}=\frac{-72}{108} =-2/3 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(36)+36}{2*54}=\frac{0}{108} =0 $
| 12-2×(x-1)=16/5×(5/8x-1/4)+12 | | x/4-3/4+3/4=16+3/4 | | -41.42=9.1x+5.9 | | 11x^=8 | | -19-19j=9-6-17j | | -6w=10−5w | | -6n^2=-330 | | 35x-21=3=27x | | 2/3x-4=x-1/2 | | -2(6x-5)=2x+12 | | 14+17g=16g | | 3x-2x+8=18 | | 1x-1x=-1 | | w+8=-5 | | -4(x+9)-41=3-56 | | 3b+10=17 | | 66=1/2h(10+1) | | 5+17h=-20-8h | | 37x-21=3+27x | | 96y=5(19y+52) | | 2k+2=-13- | | 4.2p+11=5.2p+1 | | 2x^-4x-18=0 | | 8+11x=6+13x | | x+4x+7=22 | | 1738+x=2038 | | F(x)=-4(3)× | | -4a+7a=-21 | | 2+8m=9+7m | | x+11=x+14 | | x=1/4=1/6=2-x/3 | | 5x+2x-3=60 |